1174

On the Biosynthesis of the Antibiotic Myxovirescin A₁ by *Myxococcus* virescens

W. Trowitzsch,* K. Gerth, V. Wray, and G. Höfle

GBF, Gesellschaft für Biotechnologische Forschung mbH., Mascheroder Weg 1, D-3300 Braunschweig, W. Germany

¹³C N.m.r. spectroscopy has been used to deduce the labelling patterns of the antibiotic myxovirescin A₁ derived from ¹³C-labelled acetate, methionine, and glycine which are all incorporated during biosynthesis by *Myxococcus virescens*.

We have recently reported the structure of myxovirescin A_1 , a novel macrocyclic antibiotic from *Myxococcus virescens* strain Mx v 48.¹ It shows activity against many Gramnegative bacteria where it appears to interfere with cell wall synthesis. We now report results on the biosynthesis of myxovirescin A_1 .

Preliminary studies with ¹⁴C-labelled precursors indicated that acetate, methionine, and glycine were incorporated during biosynthesis of the antibiotic while propionate was not. Thus we have fed ¹³C enriched acetate (both singly and doubly labelled), [methyl-¹³C]methionine, and [1-¹³C]glycine to *Myxococcus virescens* during the late growth phase; the antibiotic has been separated and purified as previously described.² Subsequent use of ¹³C n.m.r. spectroscopy has allowed the position of incorporation of the various precursors to be deduced as shown in Figure 1.

The proton noise decoupled ¹³C n.m.r. spectrum of myxovirescin A₁ (see Table 1), obtained after feeding with [1,2-¹³C]acetate, indicated the incorporation of thirteen intact acetate units (2.5% enrichment). Eleven of these formed a polyketide chain from C-1 to C-22 without branching to C-31 or C-33, while the remaining two intact units formed the section C-26 to C-36. Addition of [methyl-¹³C]methionine³ to the nutrition medium caused intensity enhancement of four carbon signals in the ¹³C n.m.r. spectrum attributable to C-29, C-30, C-34, and C-37 (30% enrichment). Thus all methyl groups apart from C-32 are derived from methionine. A similar experiment with $[1-^{13}C]$ glycine caused signal enhancement of the methine signal from C-23 (33% enrichment) and indicated that only one unit of glycine was incorporated per molecule of myxovirescin.

Figure 1. Schematic representation of the biosynthetic incorporation of $[1^{-13}C]$ acetate (\bigcirc), $[2^{-13}C]$ acetate (\bigcirc), [methyl⁻¹³C]methionine (\triangle), and $[1^{-13}C]$ glycine (\triangle) into myxovirescin A₁. $[2^{-13}C]$ Acetate incorporation at C-31, C-32, and C-33 (\Box) is discussed in the text.

Table 1.¹³C N.m.r. data^a for the incorporation of [1,2-¹³C]acetate, [methyl-¹³C]methionine, and [1-¹³C]glycine into myxovirescin A₁.

	J	(CC)/			J(CC)/
Carbon ^g	δ/p.p.m. ^b	Hz	Carbon	δ/p.p.m.	Hz
1 2	$\left. \begin{array}{c} 176.01 \\ 37.18 \end{array} \right\}$	57.1	19 20	$\left. \begin{array}{c} 30.42 \\ 73.24 \end{array} \right\}$	38.3
3 4	40.95 30.42	34.9	21 22	$\left.\begin{array}{c} 71.65\\ 36.02\end{array}\right\}$	38.5
5 6	$36.44 \\ 26.49 $	34.7	23 24	69.05° 45.39 ^d	
7 8	23.76 42.55 f	35.1	26 27	$\begin{array}{c} 171.14\\73.62\end{array}$	55.8
9 10	$\begin{array}{c} 212.50\\ 43.13 \end{array}$	39.0	29 30	17.52° 19.76°	
11 12	$22.08 \\ 34.69 $	35.2	31 32	28.42 ^t 11.87 ^t	
13 14	$\left. \begin{array}{c} 45.27\\ 139.64 \end{array} \right\}$	43.6	33 34	71.08 ^r 58.38°	
15 16	$125.91 \\ 130.05 $	56.4	35 36	$\left. \begin{array}{c} 34.01 \\ 18.18 \end{array} \right\}$	34.0
17 18	134.60 30.20	43.2	37	13.73 ^e	

^a Data were recorded on a Varian XL-100 n.m.r. spectrometer at 25.16 MHz. ^b In CDCl₃ relative to Me₄Si and, unless otherwise stated, the shifts for [1,2-¹³C]acetate incorporation are given. ^c Enriched carbon atom in the [1-¹³C]glycine experiment. ^d Unenriched carbon atom derived from glycine. ^e Enriched carbon atoms in the [methyl-¹³C]methionine experiment. ^f Enriched but appear as singlets in the [1,2-¹³C]acetate experiment. ^g Signal assignments have been reported by us previously (ref. 1) and are independent of the biosynthetic work.

Re-examination of the spectrum of the $[1,2^{-13}C]$ acetate feeding experiment indicated that the signal from C-33 was a singlet and was enriched to approximately the same extent as those carbon atoms arising from intact acetate units. Similarly the singlet signals from C-31 and C-32 were enriched but to a smaller extent than C-33 (1% enrichment). In order to clarify these points and to determine the orientation of acetate incorporation, feeding experiments with both singly labelled acetates were performed.

[1-¹³C]Acetate gave an unambiguous spectrum in which thirteen signals were enhanced (37% enrichment) corresponding to the intact units (Figure 1) with no other signal showing enrichment. With [2-¹³C]acetate, however, the results were more complex. As expected, signals corresponding to C-2 of intact acetate units were observed together with that from C-33 with the same intensity (9% enrichment), indicating that C-33 arises from C-2 of a cleaved acetate moiety. Somewhat surprisingly, all the C-1 atoms of incorporated acetate units were enriched to about 3%. This result can only be explained by randomization of the [2-¹³C]-acetate label in a manner similar to that described elsewhere.⁴⁻⁶ Myxovirescin A₁ is produced late in the growth phase and presumably randomization occurs from recycling of acetate in the citric acid cycle.

In the same [2-13C]acetate feeding experiment C-31 and C-32 were also enriched to about 3%, confirming the result from doubly labelled acetate. Thus C-31 and C-32 are derived from C-2 of acetate by a different and unknown biosynthetic pathway. During our investigation of other members of the myxovirescin family we observed an analogous 13-methyl substituted compound⁷ which suggests a stepwise construction of the 13-ethyl substituent in myxovirescin A₁.

In conclusion, we have been able to demonstrate by ${}^{13}C$ n.m.r. spectroscopy the origin of all the carbon atoms in myxovirescin A₁. Presumably, glycine acts as the starter unit of the polyketide chain C-22 to C-1, which is then alkylated⁸ at methylene (C-2, C-4) and acetate carbonyl (C-13, C-17) carbon atoms and oxidized (C-20). At what stage the hydroxy acid unit is incorporated, and which bond is formed first, ester or amide, is not yet known.

Received, 18th July 1983; Com. 955

References

- 1 W. Trowitzsch, V. Wray, K. Gerth, and G. Höfle, J. Chem. Soc., Chem. Commun., 1982, 1340.
- 2 K. Gerth, H. Irschik, H. Reichenbach, and W. Trowitzsch, J. Antibiot., 1982, 35, 1454.
- 3 The [¹³C]acetates and [1-¹³C]glycine were commercial products. [Methyl-¹³C]methionine was synthesized with 82% enrichment from L-methionine and [¹³C]methyl iodide according to: D. Dolphin and K. Endo, Anal. Biochem., 1970, 36, 338.
- 4 T. J. Simpson and J. S. E. Holker, *Phytochemistry*, 1977, 16, 229.
- 5 A. E. Chalmers, A. E. De Jesus, C. P. Gorst-Allman, and P. S. Steyn, J. Chem. Soc., Perkin Trans. 1, 1981, 2899.
- 6 A. E. De Jesus, W. E. Hull, P. S. Steyn, F. R. van Heerden, R. Vleggaar, and P. L. Wessels, J. Chem. Soc., Chem. Commun., 1982, 837.
- 7 W. Trowitzsch, V. Wray, K. Gerth, and G. Höfle, unpublished results.
- 8 T. C. Feline, R. B. Jones, G. Mellows, and L. Phillips, J. Chem. Soc., Perkin Trans. 1, 1977, 309.